Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 250: 121054, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38183798

RESUMO

Riverine dissolved organic matter (DOM) is crucial to global carbon cycling and aquatic ecosystems. However, the geographical patterns and environmental drivers of DOM chemodiversity remain elusive especially in the waters and sediments of continental rivers. Here, we systematically analyzed DOM molecular diversity and composition in surface waters and sediments across 97 broadly distributed rivers using data from the Worldwide Hydrobiogeochemistry Observation Network for Dynamic River Systems (WHONDRS) consortium. We further examined the associations of molecular richness and composition with geographical, climatic, physicochemical variables, as well as the watershed characteristics. We found that molecular richness significantly decreased toward higher latitudes, but only in sediments (r = -0.24, p < 0.001). The environmental variables like precipitation and non-purgeable organic carbon showed strong associations with DOM molecular richness and composition. Interestingly, we identified that less-documented factors like watershed characteristics were also related to DOM molecular richness and composition. For instance, DOM molecular richness was positively correlated with the soil sand fraction for waters, while with the percentage of forest for sediments. Importantly, the effects of watershed characteristics on DOM molecular richness and composition were generally stronger in waters than sediments. This phenomenon was further supported by the fact that 11 out of 13 watershed characteristics (e.g., the percentages of impervious area and cropland) showed more positive than negative correlations with molecular abundance especially in waters. As the percentage of forest increased, there was a continuous accumulation of the compounds with higher molecular weight, aromaticity, and degree of unsaturation. In contrast, human activities accumulated the compounds with lower molecular weight and oxygenation, and higher bioavailability. Our findings imply that it may be possible to use a small set of broadly available data types to predict DOM molecular richness and composition across diverse river systems. Elucidation of mechanisms underlying these relationships will provide further enhancements to such predictions, especially when extrapolating to unsampled systems.


Assuntos
Matéria Orgânica Dissolvida , Ecossistema , Humanos , Compostos Orgânicos , Rios/química , Carbono
2.
Water Res ; 233: 119797, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36870105

RESUMO

Clean soil is a potential capping material for controlling internal nutrient loading and helping the recovery of macrophytes in eutrophic lakes, but the long-term effects and underlying mechanisms of clean soil capping under in-situ conditions remain poorly understood. In this study, a three-year field capping enclosure experiment combining intact sediment core incubation, in-situ porewater sampling, isotherm adsorption experiments and analysis of sediment nitrogen (N) and phosphorus (P) fractions was conducted to assess the long-term performance of clean soil capping on internal loading in Lake Taihu. Our results indicate that clean soil has excellent P adsorption and retention capacity as an ecologically safe capping material and can effectively mitigate NH4+-N and SRP (soluble reactive P) fluxes at the sediment-water interface (SWI) and porewater SRP concentration for one year after capping. The mean NH4+-N and SRP fluxes of capping sediment were 34.86 mg m-2 h-1 and -1.58 mg m-2 h-1, compared 82.99 mg m-2 h-1 and 6.29 mg m-2 h-1 for control sediment. Clean soil controls internal NH4+-N release through cation (mainly Al3+) exchange mechanisms, while for SRP, clean soil can not only react with SRP due to its high Al and Fe content, but also stimulate the migration of active Ca2+ to the capping layer, thus precipitating as Ca-bound P (Ca-P). Clean soil capping also contributed to the restoration of macrophytes during the growing season. However, the effect of controlling internal nutrient loading only lasted for one year under in-situ conditions, after which the sediment properties returned to pre-capping conditions. Our results highlight that clean Ca-poor soil is a promising capping material and further research is needed to extend the longevity of this geoengineering technology.


Assuntos
Solo , Poluentes Químicos da Água , Lagos , Sedimentos Geológicos , Eutrofização , Fósforo/análise , Nitrogênio/análise , Poluentes Químicos da Água/análise , China
3.
Environ Sci Pollut Res Int ; 30(18): 52969-52981, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36843169

RESUMO

Algal-dissolved organic matter (ADOM) is an important fraction of dissolved organic carbon (DOC) in eutrophic water. Although ADOM is known to be readily transformed by microbes, the role of sunlight-induced photochemical process and the interactions between two processes on ADOM transformation remains unclear. In this study, three types of treatments for ADOM, including photochemical process under natural solar light (L treatment), microbial process (M treatment), and the simultaneous photochemical plus microbial process (L&M), were performed for 18 days. Our results showed that M treatment was more effective for the loss of DOC, chromophoric DOM (CDOM) at short wavelengths (a254 and a280), than L treatment, while L treatment was more effective for the transformation of a350 and the fluorescent components of the ubiquitous humic-like component and the tryptophan-like component. Comparison in the decay kinetics of DOC and CDOM in the three treatments showed that the simultaneous photochemical and biological processes exhibited an inhibitory effect on DOC decay rate but not the percentage of labile DOC fraction. Higher relative abundance of protein-like substances was found after L&M treatment, while the relative abundance of humic-like substance and aromaticity increased after M treatment, and the low molecular-weight compounds were produced after L treatment. Our results emphasized the importance of photochemistry in processing ADOM to mediate the chemodiversity in natural water.


Assuntos
Matéria Orgânica Dissolvida , Luz Solar , Água , Espectrometria de Fluorescência , Processos Fotoquímicos , Substâncias Húmicas/análise
4.
J Hazard Mater ; 449: 131016, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36821894

RESUMO

The stability of organic matter-iron-phosphate (OM-Fe-P) association has an important impact on the migration and sequestration of organic carbon (OC) and P in the environment. Here, we examined the release characteristics of Fe, P and OM due to the abiotic reduction of OM-Fe-P associations by Na-dithionite. The associations were synthesized with algae-derived OM (AOM) and terrestrial humic acid (HA) through either adsorption onto iron (hydr)oxide or coprecipitation with Fe(III). Results indicated that OM and P adsorbed onto the associations were rapidly released, whereas coprecipitation yielded much lower release rates of Fe, P, and OM. The stronger inhibitory effect on reduction from coprecipitation can be explained by larger particles formed by coprecipitation and coprecipitation taking up more OC that had a passivation effect on the associations. The release rates of OM and P were lower in coprecipitates formed with HA than formed with AOM for a given OC/Fe ratio. This observation can be attributed to a patchy distribution of OC in AOM associated coprecipitates, which showed a weaker aggregation of OC with Fe and P. In contrast, the distribution of OC in HA-associated coprecipitates was more homogenous, enabling a stronger aggregation of OM with P and a greater passivation effect on P release. Our results revealed that OM sources, association formation pathways, and elemental stoichiometry collectively controlled the stability of OM-Fe-P associations.

5.
Sci Total Environ ; 856(Pt 2): 158970, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36162570

RESUMO

Color dissolved organic matter (CDOM) plays a key role in lacustrine ecosystems and its composition is commonly mediated by the allochthonous input and autochthonous production. Deep lakes have a strong in-lake processing, which highly affects the sources, composition and cycle of CDOM. Here, the second deepest lake (Lake Fuxian) in China was selected to investigate the effects of allochthonous input and in-lake processing on lacustrine CDOM in deep lakes. Firstly, a detailed survey on CDOM composition across Lake Fuxian in the top water layer and inflowing rivers was carried out in the wet season representing the allochthonous input. In addition, CDOM in Lake Fuxian was compared with those in other lakes with distinct catchment characteristics and lake morphology. The results showed that compared to lacustrine CDOM in Lake Fuxian, the riverine CDOM contained much more humic-like substances, resulting in the humic-like fluorescence intensity peaked at the confluence of rivers into Lake Fuxian. In contrast, CDOM in Lake Fuxian was dominated by the protein-like substance. Comparison of CDOM composition among Lake Fuxian (well-vegetated catchment, deep lakes) with other diverse lakes in China (shallow/deep lakes with poor-vegetated catchment, and shallow lakes with well-vegetated catchment) showed similar CDOM quality in all type lakes, which were dominated by non-humified and autochthonous CDOM. Yet, CDOM quantity increased as the orders of deep lakes within poor-vegetated (Tibetan deep lakes) < the deep lake within well-vegetated catchment (Lake Fuxian) < shallow lakes within poorly-vegetated catchment (Tibetan shallow lakes) < shallow lakes within well-vegetated catchment (lakes along the middle and lower reaches of Yangtze River). Our results evidenced that the effect of allochthonous input on CDOM composition could be counteracted by in-lake processing in deep lakes. For deep lakes, a comprehensive understanding of in-lake processing of CDOM is critical for predicting lacustrine DOM composition and cycle.


Assuntos
Matéria Orgânica Dissolvida , Lagos , Ecossistema , Rios , Substâncias Húmicas/análise , China , Espectrometria de Fluorescência
6.
J Environ Manage ; 320: 115884, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35940015

RESUMO

Internal nutrient loadings pose a high risk of being an additional N and P source, exacerbating eutrophication and deteriorating water quality. In this study, we selected the Daheiting Reservoir (DHTR) in North China, with a pronounced water level gradient, to investigate internal N and P loadings, estimate N and P fluxes across the sediment‒water interface based on the pore water profiles, and reveal the potential effects of water discharge from an upstream reservoir and high-intensity cage aquaculture on the risks of internal N and P release. The results indicated that DHTR presented with severe internal nutrient loadings, and the N and P fluxes showed significant spatiotemporal variations. NH4+-N and soluble reactive phosphorus (SRP) fluxes were higher in deep areas (averages of 26.14 and 9.9 mgm-2d-1, respectively) than in shallow areas near inflows (averages of 5.0 and 1.24 mgm-2d-1, respectively). Unexpectedly, the estimated NH4+-N and SRP fluxes were the lowest in summer (averages of 3.94 and 0.33 mgm-2d-1, respectively), which may have been influenced by seasonal thermal stratification and copious discharge from the hypolimnion of the upstream reservoir (Panjiakou Reservoir). Comparison of annual internal and external N and P loadings revealed that water discharge from the upstream Panjiakou Reservoir was the dominant source of N and P to the reservoir, contributing up to 83.6% of N input and 55.4% of P input. The internal P loading also contributed to water eutrophication to a great extent, accounting for 34.7% of the total P input. Our results highlight the impact of upstream reservoir discharge operation on downstream reservoir water quality and the importance of controlling the internal nutrient loading in cascade reservoirs, and further provide theoretical and practical foundations for the development of policies and strategies to conserve reservoir ecosystems.


Assuntos
Fósforo , Poluentes Químicos da Água , China , Ecossistema , Monitoramento Ambiental/métodos , Eutrofização , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise
7.
Huan Jing Ke Xue ; 43(8): 4108-4117, 2022 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-35971708

RESUMO

Macrophyte- and algae-dominated lakes (zones) are the two typical states of shallow lakes, where the source and composition of organic matter are distinct. The burial of organic matter (OM) in the sediment supports the role of lakes as carbon sinks. However, organic matter in the sediments could be further processed, influencing the carbon cycle. The post-burial metabolism of the sedimentary OM relates closely to its composition. However, information on the differences in composition remains limited, especially the molecular composition of organic matter from sediments in the macrophyte-dominated and algae-dominated lakes. In this study, sediments were collected from the macrophyte-dominated and algae-dominated zones of Taihu Lake (East Taihu Lake and Meiliang Bay, respectively), and the active pool of sedimentary OM (water soluble organic matter, WSOM) was extracted and purified. The composition of the WSOM was characterized in detail via absorption spectroscopy, fluorescent spectroscopy, infrared spectroscopy, and Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). The optical index of E2:E3 showed that the molecular size of WSOM in the macrophyte-dominated zone (M-WSOM) was slightly larger than that in the algae-dominated zone (A-WSOM). Consistently, the intensity-weighted molecular weights were identified as 388.9 and 379.9, respectively, via FT-ICR MS analysis. M-WSOM was more humified than A-WSOM, as evidenced by the SUVA254 and HIX values. The FT-ICR MS results showed that the relative abundance of the condensed aromatic substance and the aromatics were 6.3% (intensity-weighted) and 7.7% for M-WSOM and 1.1% and 4.4% for A-WSOM, respectively. The excitation-emission matrix fluorescence-parallel factor analysis (EEM-PARAFAC) suggested that the protein-like component was more in A-WSOM than that in M-WSOM, and the FT-ICR MS results showed that the intensity-weighted relative abundances of peptides were 35.6% and 15.6% for A-WSOM and M-WSOM, respectively. The FT-ICR MS results further showed that the heteroatom-containing molecules were abundant in the sedimentary WSOM, i.e., 82.9% and 91.7% for M-WSOM and A-WSOM, respectively. The nitrogen-containing molecules dominated, contributing to 53.5% and 78.5% of M-WSOM and A-WSOM, respectively. There were 30.4% and 41.4% phosphorus-containing molecules in M-WSOM and A-WSOM, respectively. The phosphorus-containing molecules in M-WSOM were mainly aliphatics and highly unsaturated structures with low oxygen, whereas those in A-WSOM were mainly peptides. This study elucidated the detailed molecular composition of WSOM in the macrophyte-dominated and algae-dominated zones of Taihu Lake, which aids understanding of the carbon, nitrogen, and phosphorus biogeochemical cycles in lakes.


Assuntos
Sedimentos Geológicos , Lagos , China , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Lagos/química , Nitrogênio/análise , Fósforo/análise , Análise Espectral , Água/análise
8.
Water Res ; 219: 118560, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35576761

RESUMO

The generation of organic matter (OM) occurs synchronously with phytoplankton growth. Characterization of the generated particulate and dissolved OM during algal blooms in eutrophic lakes is crucial for better understanding the carbon cycle but remains limited. We speculate that sediments play a critical role in the biogeochemical transformation of OM derived from algal blooms in shallow lakes. In this study, changes in OM quantity and quality and the concentrations of biogenic elements (nutrients and metals) during algal blooms, were studied in situ in a shallow eutrophic lake (Lake Chaohu, China). Two enclosure treatments in the presence and absence of sediments were compared, and the cause-effect relationships among sediment, nutrients, metals, phytoplankton, particulate OM (POM), and dissolved OM (DOM) were revealed by a partial least square-path model (PLS-PM). The results showed that the changes in nutrients and metals concentrations over time were consistent with that of chlorophyll a (Chl a), and at the end of the treatment, the concentrations of Chl a, nutrients, and metals in Treatment S (with sediments) were approximately 3-5 times of those in Treatment N (without sediments). The high concentration of Chl a in Treatment S resulted in a high quantity of POM, which showed low molecular weight, low humification, and was enriched in protein-like components (∼ 70%). For DOM, the quantity increased after the decrease in POM, and DOM quality showed a significantly higher abundance of humic-like components and a higher molecular weight than POM did. The PLS-PM results showed that the significant positive effects of sediment on nutrients, metals, phytoplankton, POM, and DOM were 0.28, 0.37, 0.28, 0.25, and 0.25, respectively, suggesting that sediment had an important role in the biogeochemical cycles of these substances. The significant negative relationship between POM and DOM (-0.62) and the distinct difference in POM and DOM quality implied the efficient transformation of the freshly generated OM to those with a higher molecular weight, higher humification, and potentially refractory. Our results depicted the quick biogeochemical transformation of nutrients, metals, and the potential formation of refractory organic carbon in water column, as driven by the couple of the algae pump with the microbial carbon pump.


Assuntos
Sedimentos Geológicos , Lagos , Carbono , China , Clorofila A , Eutrofização , Lagos/química , Fitoplâncton
9.
J Hazard Mater ; 433: 128791, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35366452

RESUMO

Humic acid (HA) and phosphate interactions play a vital role in the biogeochemical cycle of carbon and nutrients and thus the trophic state of a lake. The adsorption behavior of HAs to sediments in the absence and presence of phosphate was investigated in this study. Three types of HAs were used, AHA from algae-dominated lake sediments, MHA from macrophyte-dominated lake sediments, and a reference HA (RHA) with terrestrial sources. The adsorption capacity of lake sediments was highest for AHA, which can be explained by that AHA contained more carboxyl-containing molecules, proteinaceous compounds and polysaccharides that were preferentially adsorbed by minerals. Phosphate showed a stronger inhibitory effect on MHA adsorption than on AHA adsorption, suggesting that AHA can more effectively replace phosphate adsorbed to sediments. Our findings show that the functional groups of organic compounds control not only their fractionation and burial but also their ability to replace phosphate in sediments. We propose a novel mechanism to explain the legacy effect of lake eutrophication. That is, as lakes shift from a macrophyte-dominated state to more eutrophic, algae-dominated state, increasing algae-derived organic compounds can promote the release of phosphate from sediments, forming a positive feedback loop that sustains internal phosphorus loading and hence lake eutrophication.


Assuntos
Lagos , Poluentes Químicos da Água , Adsorção , China , Monitoramento Ambiental , Eutrofização , Sedimentos Geológicos/química , Substâncias Húmicas/análise , Lagos/química , Fosfatos , Fósforo/análise , Poluentes Químicos da Água/análise
10.
J Hazard Mater ; 406: 124691, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33296762

RESUMO

Internal nitrogen (N) loading of lakes is commonly controlled by sediment dredging, although its comprehensive effect on internal N loading remains unclear. Herein, we examined the long-term effects of sediment dredging on internal N loading from a new perspective on the N budget at the sediment-water interface (SWI) through a simulation of field dredging performed by incubating intact sediment cores from a shallow eutrophic lake (Lake Taihu). We further evaluated the role of settling particles (SP) in the recovery of N cycle processes after dredging and its potential impact on the N budget. Our results demonstrated that dredging could help reduce organic matter and total N in sediments; improve the redox environment of the SWI; slow down N mineralization, N fixation, denitrification, and anaerobic ammonia oxidation (anammox); and alter the N budget at the SWI and the contribution of various N cycle processes. However, the input of SP enriched in fresh organic matter and N could accelerate the recovery of N cycle processes at the SWI, reducing the variation in the N budget and the contribution of each N cycle process caused by dredging. Dredging significantly reduced the N flux at the SWI, which was evident from the reduction of inorganic N release flux and N removal through denitrification and anammox. Therefore, sediment dredging has its advantages and disadvantages in managing internal N loading in lakes. To maintain a long-term control on the release of internal N through sediment dredging, measures should be taken based on the in-lake and watershed to inhibit the inflow and settlement of particulate matter.

11.
J Hazard Mater ; 394: 122548, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32213385

RESUMO

Sediment dredging is an effective method to reduce internal phosphorus (P) loading of eutrophic lakes. However, external P loading may diminish the longevity of the effect of sediment dredging on P internal loading, and the mechanism of the same is unclear. Here, we used one-year in-situ simulation experiments to study the migration and transformation processes of P under the effect of external loading (suspended particle matter, SPM) input and internal loading control by dredging. The results showed that dredging can effectively reduce the internal loading and mobility of P, increase the P adsorption and retention capacity of the sediment, and improve the oxidation environment at the sediment-water interface (SWI), thus, inhibiting the release of internal P. The input of SPM, however, can significantly inhibit the above processes and increase the risk of P resupply and release. Temperature, dissolved oxygen, and the P resupply capacity (R) are the key factors affecting the P flux across the SWI. Therefore, it is necessary to control the input of SPM to effectively inhibit eutrophication after dredging. More measures to control the input of SPM, such as establishing buffer zones, ecological wetlands, and forebays, should be explored and applied.

12.
Sci Total Environ ; 704: 135318, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31780162

RESUMO

The level of eutrophication in reservoirs is dependent on their internal and external P loads. Identifying the P pollution characteristics and its fractional composition in sediments is therefore necessary to determine the potential bioavailability and dominant sources of P for effective water pollution control. In this study, we investigated the P pollution characteristics in the overlying water and sediment in a chain of reservoirs (the Panjiakou (PJK), Daheiting (DHT) and Yuqiao (YQ) Reservoirs) in North China. Our results showed that the P concentrations in the overlying water of the YQ Reservoir was higher than that of the PJK and DHT Reservoirs, but the sediment P loading and P bio-availability were lower than the PJK and DHT Reservoirs. However, the sediment P release risk in the YQ Reservoir was higher than the DHT and PJK Reservoirs. The YQ Reservoir was mainly polluted by internal sediment P release and external sources predominantly derived from the inflowing polluted Sha River Basin. Various forms of P in the DHT Reservoir decreased with depth, and the P in the overlying water column was mainly sourced from internal P release due to sediment accumulation of excess P from human activities. In recent years, the proportion of bio-available P (BAP) in the PJK and YQ Reservoirs had increased, and the proportion of the more inert Al-P and Ca-P in the PJK Reservoir decreased. Ca-P in the YQ Reservoir had also decreased, indicating that inert P has been gradually transformed into active P in the PJK and YQ Reservoirs in recent years. The observed differences in P loading and sedimentary P fractions indicate different pollution characteristics and sources between the three reservoirs. We therefore recommend site-specific remediation strategies for effective control on P pollution in the three eutrophic reservoirs.


Assuntos
Monitoramento Ambiental , Fósforo/análise , China , Eutrofização , Sedimentos Geológicos , Nitrogênio , Poluentes Químicos da Água
13.
Huan Jing Ke Xue ; 40(12): 5358-5366, 2019 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854607

RESUMO

It is of great importance to study the environmental significance of phosphorus fractions in overlying water and sediments of typical phytoplankton-and macrophyte-dominated zones. It will help to clarify the process of phosphorus migration and transformation in the sediment-water interface, and has practical significance for understanding the eutrophication process and its treatment in different regions of Taihu Lake. The investigation was conducted within typical phytoplankton-and macrophyte-dominated zones of Taihu Lake over four seasons to analyze the spatial and temporal differences between phosphorus fractions in water and sediments, and reveal their environmental significance. The results showed that:① Total phosphorus (TP), total soluble phosphorus (DTP), dissolved inorganic phosphorus (DIP), and particulate phosphorus (PP) in the overlying water of phytoplankton-dominated zones were much higher than those in macrophyte-dominated zones. Most of them showed seasonal characteristics, which were higher in summer and autumn than in winter and spring. PP is the main component of TP, accounting for 71.8% to 89.6%. A similar distribution character was found in the content of chlorophyll (Chl-a) compared with phosphorus concentration in overlying water. ② The concentration of TP in the surface sediments of phytoplankton-dominated zones was 372.38-529.64 mg·kg-1, and that in macrophyte-dominated zones was 304.29-454.27 mg·kg-1. In surface sediments, concentrations of TP in phytoplankton-dominated zones were significantly higher than in phytoplankton-dominated zones. The highest TP concentrations appeared in winter, and the lowest in summer. These were owing to the input of exogenous pollution, and the migration and transformation of internal phosphorus between sediments and overlying water under different environmental conditions. ③ The order of the mass fraction of phosphorus in sediments was:NH4Cl-P < Fe-P < Org-P < Res-P < Al-P < Ca-P. Mobile-P=NH4Cl-P+Fe-P+Org-P, accounting for 9.10%-16.93% of TP in phytoplankton-dominated zones, and slightly higher in macrophyte-dominated zones, where it was 8.11%-13.50%. Res-P accounted for 10.06%-14.97% of TP in phytoplankton-dominated zones, and 11.02%-20.28% in macrophyte-dominated zones. The risk of internal phosphorus release in phytoplankton-dominated zones is high, which is not conducive to the fixation and burial of phosphorus. The eutrophication degree of different regions in Taihu Lake is obviously different, and different characteristics of phosphorus release and burial are showed. The phytoplankton-dominated zones deserve special attention because of their high internal phosphorus load and release potential.


Assuntos
Lagos , Fósforo , Fitoplâncton , Poluentes Químicos da Água , China , Monitoramento Ambiental , Eutrofização , Sedimentos Geológicos
14.
Huan Jing Ke Xue ; 40(8): 3539-3549, 2019 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854759

RESUMO

The effect of external pollution inputs on phosphorus recovery, transport, and transformation in newborn surface layers from sediment dredging remains unclear. Clarifying this issue is important for the control and management of external pollution loads at the watershed scale, particularly after the implementation of sediment dredging activities. In this study, sediments in Meiliang Bay of Lake Taihu were investigated. In-situ dredging simulation was used to study the transport and transformation of phosphorus at the sediment-water interface, before and after dredging, with either external or non-external particulate matter inputs, and to explore the effect of dredging on phosphorus release as part of internal loading. The results showed that limiting the inputs of external particulate matter and dredging had positive impacts on the control of TP and TN in the sediments. Dredging significantly reduced the content of potentially mobile phosphorus (Mobile-P) in surface sediments. Iron-bound phosphorus (Fe-P) was the first main component of the reduced Mobile-P and Organic phosphorus (Org-P) was the second. The content of Loose-bound phosphorus (Lb-P) was less than 1‰ of the total phosphorus. After 210 days of the experiment, the concentration of PO43--P in the pore water of the dredged treatment was lower than that of the undredged treatment, and this difference was more pronounced without external particulate matter input. Furthermore, the concentration of PO43--P in the pore water of the dredged treatment (without external particulate matter input) was maintained at a low level, while this first increased and then subsequently decreased for the other treatments. The concentrations of PO43--P in pore water were positively correlated with Fe-P in the corresponding sediment layers. Source-sink transition took place between winter and spring, leading to the switch in sediment functioning as a sink to a source. The results indicated that dredging could reduce the release rate of internal phosphorus from sediments. Furthermore, limiting the input of external particulate matter plays an important role in facilitating the control of internal phosphorus loading by dredging.

15.
Artigo em Inglês | MEDLINE | ID: mdl-31450850

RESUMO

Nutrients released from sediments have a significant influence on the water quality in eutrophic lakes and reservoirs. To clarify the internal nutrient load and provide reference for eutrophication control in Yuqiao Reservoir, a drinking water source reservoir in China, pore water profiles and sediment core incubation experiments were conducted. The nutrients in the water (soluble reactive P (SRP), nitrate-N (NO3--N), nitrite-N (NO2--N), and ammonium-N (NH4+-N)) and in the sediments (total N (TN), total P (TP) and total organic carbon (TOC)) were quantified. The results show that NH4+-N was the main component of inorganic N in the pore water. NH4+-N and SRP were higher in the pore water than in the overlying water, and the concentration gradient indicated a diffusion potential from the sediment to the overlying water. The NH4+-N, NO3--N, and SRP fluxes showed significant differences amongst the seasons. The NH4+-N and SRP fluxes were significantly higher in the summer than in other seasons, while NO3--N was higher in the autumn. The sediment generally acted as a source of NH4+-N and SRP and as a sink for NO3--N and NO2--N. The sediments release 1133.15 and 92.46 tons of N and P, respectively, to the overlying water each year.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Lagos/química , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental/métodos , Eutrofização/fisiologia , Humanos , Nutrientes , Análise Espaço-Temporal , Qualidade da Água/normas
16.
Huan Jing Ke Xue ; 39(5): 2154-2164, 2018 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965515

RESUMO

Yuqiao Reservoir is an important source of drinking water in Tianjin. In recent years, the eutrophication status is becoming more and more serious, but its internal loading and distribution characteristics of nitrogen and phosphorus is not clear. The profiles of nitrogen and phosphorus at the sediment-water interface were analyzed using the Peeper (pore water equilibrium) technique and the spatial distribution was investigated. The existing forms of the released nitrogen and phosphorus were investigated by the static intact sediment cores, and the fluxes of nitrogen and phosphorus at the sediment-water interface were estimated by static incubations with intact sediment cores. The results demonstrated the following. ① The contents of PO43--P, NH4+-N, NO3--N, and NO2--N in sediments were 0.5-6.5, 0.5-10.9, 2.2-16.2, and 0.05-0.6 mg ·kg-1, respectively. The contents of nutrient were lower as depth increased, and horizontal distribution characteristics indicated significant differences. ② The contents of PO43--P and NH4+-N in the interstitial water were much higher than in the overlying water, suggesting that the interstitial water had the potential to diffuse nutrients to the overlying water. The concentrations of PO43--P and NH4+-N in the interstitial water increased rapidly at 0-5 cm and then decreased gradually. ③ PO43--P and NH4+-N diffused from the sediment to the overlying water, and the fluxes of them were 1.1-13.3 mg ·(m2 ·d)-1 and 20.6-250.5 mg ·(m2 ·d)-1, respectively. The exchange fluxes of NO3--N and NO2--N ranged from -20.4 to 33.4 mg ·(m2 ·d)-1 and from -7.4 to 0.4 mg ·(m2 ·d)-1, respectively. PO43--P and NH4+-N were the main nutrients in the sediment released to the overlying water. The fluxes were high in the south and low in the north, and also high in the mouth of the Linhe River and downstream of the reservoir. Compared with similar studies, the fluxes at the sediment-water interface of Yuqiao Reservoir were relatively high, indicating that the sediment was an important source of nutrients for the overlying water in Yuqiao Reservoir.

17.
Huan Jing Ke Xue ; 39(5): 2306-2315, 2018 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965532

RESUMO

Spatial heterogeneity of N2O generation and emissions in multi-ecotype lakes limited the accurate estimation of the N2O fluxes in lakes, but few studies on the characteristics of N2O generation and emissions have been conducted. In this study, N2O flux at the water-gas interface, dissolved N2O concentration in the water column, and N2O flux at the sediment-water interface in typical grass-type and algal-type zones of Taihu Lake were analyzed during summer, and indoor micro-environment experiments were conducted to illustrate the main factors affecting the generation and emissions of N2O. The results showed that the N2O fluxes at the water-gas interface, dissolved N2O concentration, and N2O fluxes at the sediment-water interface of the emergent macrophyte type area was higher than the algae-type area and submerged macrophyte area during the summer., with N2O fluxes at the water-gas interface of (115.807±7.583), (79.768±1.842), and (3.685±0.295) µmol ·(m2 ·h)-1, respectively. The dissolved N2O concentration in the water column were (0.051±0), (0.029±0.001), and (0.018±0) µmol ·L-1, respectively; and the N2O fluxes at the sediment-water interface were (178.275±3.666), (160.685±0.642), and (75.665±1.016) µmol ·(m2 ·h)-1, respectively. The spatial difference could be attributed to dominant plants and the concentration of inorganic nitrogen in the water column. The results of micro-environment experiments showed that nitrate and organic carbon sources could significantly increase the N2O production potential of sediments, the high concentration of NH4+-N in the water column might inhibit the N2O production in sediments, and the production rates of N2O in the sediment increased remarkably when the incubation temperature increased, suggesting that the generation and emissions of N2O were mainly restricted by nitrate, organic carbon, and temperature in summer.


Assuntos
Clorófitas , Lagos , Óxido Nitroso/análise , Poaceae , Estações do Ano , Carbono , China , Sedimentos Geológicos , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...